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A technique from multiple-scale singular perturbation theory is used to derive a solution to the equa-
tions of the direct interaction approximation for turbulence valid in the limit e—0. This approach per-
mits non-self-similar solutions to be derived which reduce to the renormalization-group results in the

special case of self-similar forcing.
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There has been a fair amount of published work in re-
cent years exploring the potential for a renormalization-
group analysis of fluid mechanical turbulence (for exam-
ple, Refs. [1-5]). The one conclusion that may safely be
drawn from this work is that if such an approach is to
yield a satisfactory theory of turbulence, a more thorough
understanding of its nature is necessary. In this spirit,
the present paper clarifies the relationship between the
renormalization group as applied to turbulence and the
multiple-scale perturbation techniques of singular pertur-
bation theory. In the process, we extend the range of ac-
cessible problems to those with certain types of non-self-
similar forcing. It is hoped that the technique proposed
here might also have applications to non-self-similar ver-
sions of problems from other areas of physics which have
been solved by renormalization-group techniques.

Each of the available techniques for deriving inertial-
range solutions for turbulence (the various versions of the
renormalization group, the similarity-solution—asympto-
tic-expansion technique of [4], etc.) involves two types of
approximations: statistical approximations for closing the
infinite heirarchy of moment equations and whatever ad-
ditional approximations are necessary to solve the equa-
tions that result from the statistical closure approxima-
tions. It has been noted [4,6] that the statistical closure
approximation underlying the renormalization-group
analysis of turbulence is equivalent to the direct interac-
tion approximation (DIA) of Kraichnan [7]. The
renormalization-group techniques we are concerned with
here employ the € expansion as the additional approxima-
tion to make the problem analytically tractable. That the
DIA plus the &€ expansion are sufficient to yield the
Yakhot-Orszag renormalization-group results [2] was
shown explicitly in Refs. [4,8], where a similarity solution
for the DIA integral equations was presented which
yielded the Yakhot-Orszag results when expanded for
small €.

The purpose of the present paper is to show how an &-
expansion solution to the DIA equations may be derived
using singular perturbation theory. This technique’
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makes no use of the self-similarity inherent in the
renormalization-group analysis and so may potentially be
used to attack a much wider class of problems. In the
present work, the response of the inertial range to one
type of non-self-similar forcing is examined. (By inertial
range is meant the range of length and time scales be-
tween the smallest viscous dissipation scales and the larg-
est energy-containing scales. In this work, the inertial
range is dominated by inertial effects, but it is not neces-
sarily self-simila~-

We are concerned with the statistics of solutions to the
Navier-Stokes equations,
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when forced by the Gaussian random vector field f;(x,?)
with the two-point correlation
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(filt,K)f (k)= F(t—t',k)P;(k)d(k+k') . (2

We shall consider the special case of forcing with
F(t—t',k)=Fy(k)d(t—1t').

The DIA provides equations for the infinitesimal
response function and the two-point correlation function
describing the statistics of the solutions of these equa-
tions. For the statistically homogeneous, stationary and
isotropic turbulence studied here, these tensors may be
written, in the time—wave-number domain,

Su;(k,t) 'k ,
<8fj(k’,t’)> G(t—1", k)P, (K)8(k+K') , )

(uy(k,Du (k' 1)) = E(t—1t',k)P;(k)d(k+k'),
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where P,;(k)=38,,—k;k;/k* The functions G(t,k) and
E (1, k) satisfy the equations [9]

[ "7ds G(s,k)G (1 —5,9)E(t —s5,p)=5(1) ,
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where the geometric coefficients @, and b, are

(1—2z2) (14222 —32zx +x2)
2(1—2xz+x?)

_ (1—z*)(z—2zx?+x?)

x(1—2xz+x2?)

and q is related to k and p by g>=k2+p2—2kpz. The
wave-number integrals have been written in a form fol-
lowing Ref. [4] for convenience in the ensuing analysis.

The initial condition for the Green’s function is
G(t,k)—1 as t -0+. At t=0, E(t,k) takes the value
E(k), the energy spectrum function. It should be
remembered that here, since ¢ is the time difference ¢ —t’,
the “initial conditions” are really conditions on the
equal-time values of the two-point functions.

Before proceeding with the main analysis of this paper,
it is useful to recall that Kraichnan [3] has identified the
fundamental approximation of the e-expansion renormal-
ization group as a scale-separation assumption, in which
it is assumed that the dominant nonlinear interactions
affecting a given wave-number k are those involving
wave-number triads k,p,q with p=|p| and ¢ =|q| much
larger than k = |k|. Kraichnan implements this assump-
tion directly, with his distant-interaction approximation,
by including only interactions with p,q >>k. Kraichnan
also pointed out that his result could be obtained pertur-
batively. The purpose of the present work is to show how
singular perturbation theory may be employed to explic-
itly make use of the multiple-scale nature of the problem
in the limit e—0 to derive non-self-similar solutions.

In keeping with our intention of making a multiple-
scale, singular-perturbation analysis, we assume that the

a,(x,z)= ,

(5)
b,(x,2)
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[ 7ds E(s,0)G (1 —s5,9)E(t —s,p)

[ 7ds G(s,KE(t+5,9)E(t +s,p)+ [ “ds G(s,OF(t +s5,k) ,
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parameter €), where g(x) is an arbitrary function of its
argument. This function is slowly varying in the sense
that k[0g(k*®)/0k]/g(k®) is small, just as, more com-
monly, a function f(ex) is considered to be slowly vary-
ing because [df(ex)/dx]/f(ex) is small. In a manner
similar to that in which weakly nonlinear expansions of
the solutions to nonlinear partial differential equations
are constructed, the power-law part of F(k) is chosen so
as to be just on the verge of being strong enough (that is,
the random forcing is just long-range enough) to make
the nonlinear interactions of the fluctuations important.
Similar reasoning leads to making the definition
E(k)=¢ge(k®)k. Thus, the € expansion is an approxima-
tion based on the smallness of the nonlinear effects, a
smallness which is due to the assumed relatively short-
range nature of the force correlations.
The perturbation analysis begins with the ansatz

G(t,k)=e Y WOKH (1) | E(t,k)=E (k)e ~ k¥t (g)

We wish to determine v(k) and E (k) in the limit ¢—0.
Substituting the expressions (6) into the DIA Eq. (4) and
: : —v(p)pzt 7v(q)q7't :
neglectlzng exponentials e and e relative to
e YRkt (since we expect that p,g >>k in the limit e—0
and v(k)k? is an increasing function of k; this must be
verified a posteriori) leads to the integral equations
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forcing has the form Fy(k)=g(k®)k® (defining the small  and
|
w +1 k E(k)E(p)
K)E(k)+1 d, dzb, |—,
WOEG)+4 [ "dp [ dz b, P Mok +vip)p i+ vg)q?
N +1. k2 2[vip)p*+v(q)q?]
=114 dz—a, |—,z |E(p)E +Folk). (8)
2fo PJ_, zq2a1 z|Ep) (q)[v(k)k2+v(p)p2+v(q)q2]2 0

We begin with (7) and solve it for v(k) in terms of
E(k)=¢ge(k®)k; the function e(x) is as yet unknown.
This integral equation represents a singular-perturbation
problem in the sense that a straightforward expansion for
small € leads to divergent integrals and useless results.
Multiple-scale perturbation techniques are not commonly
applied to integral equations; the invariance-condition
technique proposed in [10] is used here. This technique
has been applied to ordinary [10,11] and partial [12,13]
differential equations. The basis of this technique is the

[
idea that a straightforward expansion is valid in a small
domain and may be used to construct a solution valid in a
larger domain. In the present context, the straightfor-
ward expansion is invalid because the integral term, in-
volving an integral over a semi-infinite domain, is larger
(by a factor of 1/¢) than a straightforward expansion
would indicate.

The perturbation technique employed here does not
work on Fredholm integral equations such as (7), so we
replace the lower limit of the p integral by k and solve the
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resulting Volterra equation instead. Because the dom-

inant contribution to the integral comes from the region,

near the upper limit, it is to be expected that the solution
to the Volterra equation approaches the solution of the
Fredholm equation as k —O0.

The larger domain over which we desire a solution,
over which the small-scale expansion is not valid, is
J

El/EE
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parametrlzed by k and we define a new variable k by

=k'*k. The expansion may then be constructed by
spllttmg the integration domain into a large part and a
small part and treating the integral over the small part as
small compared to the integral over the large part. Equa-
tion (7) then becomes

celpZp : )

v(k)—— [f X/ l/pdp] fHdz b,

2z

Solving for v(k) as an expansion in € by iteration yields
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where
€ o +1 k
A—Zfil/edpf—lebl -,z
elp’lp an
—wk)k*+v(p)p2+v(g)g?

is O (1), per the discussion above, and is a function of k
and k=k'*k. New 1ntegratlon variables have been
defined by p=k!/*pand g=k '/

The property of this expanswn that prevents it from
being useful is that the O(e) term becomes large like Ink
as k—0. Thus, the asymptotic expansion breaks down
when Ink ~1/¢ or In(k®)~1. The singularity in the in-
tegrand which leads to this Ink behavior may be isolated,
allowing us to write
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=- %IHE + Tnonsingular ’ (12)

where T onginguiar TEPTEsents nonsingular terms. Then the
expansion for v(k) is

1 ¢
A—g‘—;e(k)1nk+7'nonsmgu]dr+0(e ). (13)

v(k)=
The function A4 is determined by noting that the ex-
pansion (13) must be invariant, through O(e), under the
transformation k'=a®k, k'=ak, where a is a parameter
[10]. The_infinitesimal operator for this transformation
group is €k (d/0k )—k(d/3k ); we may enforce the invari-
ance condition by requiring that
k9 g9

Pl (expansion)=0(g?) . (14)

— vk +vip)p2+viq)q?

-
This condition leads to a differential equation for 4:

ekA'+2e(k)4™'=0. (15)

A rePresents the derivative of A with respect to k with
¢k held constant; k'/°k is transparent to the

invariance-condition operator. Equation (15) is easily

solved to give

172

—d=|Cc+2 [“e(s)®
vik)=4=|C+< [ Te(s)< : (16)

where we have reverted to the original variable k and in-
troduced the constant of integration C.

Inasmuch as we are interested in the limit & —0, for
which the solution to the Volterra integral equation de-
rived here becomes identical to the solution of the origi-
nal Fredholm integral equation, we assume the integral
dominates the constant in this limit and find

172 172

©

v(k)~
kE

2 ds
5 (s) p (17

We next consider the integral equation of (8) for E (k).
The integral on the right-hand side of this equation, in-
volving a,, may easily be shown not to yield the type of
logarithmically growing term encountered in the deter-
mination of v(k), and so this integral does not contribute
to the solution for E (k) to the present order of approxi-
mation. Consideration of the integral on the left-hand
side of (8), and the similar integral in the analysis of (7),
reveals that the difference in sign in the denominator of
the integrands does not affect the logarithmically diver-
gent term, and so the integrals are equivalent in so far as
the present approximation is concerned. Equation (8)
may thus be written 2v(k)k2E (k) =Fy(k), and we find

172
g(k®)

e

fixing e(k®) implicitly. Equations (6), (17), and (18)
comprise a solution for G(t,k) and E(t,k) valid in the
limit £— O for forcing of the form Fy(k)=g(k®)k?>.

The self-similar inertial-range soiution of Refs. [2,4]
corresponds to e(s)=E,/es?’3, so that the energy-
spectrum  function has the power-law form
E(k)=Eyk'~%/3. Equation (17) then gives the solution
v(k)~(3E,/5¢)/?k ~¢/3. If a constant v, is defined as

e 5
e(k®)= ‘2‘ 172 » (18)
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the coefficient of the power of k in wv(k), then
E,/2v3=5¢/6, in agreement with the solution presented
in Ref. [4]. As described in that paper, an additional con-
straint may be imposed which requires € =4 and provides
a second relation between E; and v, fixing the Kolmo-
gorov constant.

A singular-perturbation technique has been presented
for the solution of the equations of the direct interaction
approximation for turbulence which does not require that
the solution have a power-law or self-similar form. It was
shown that this technique recovers the renormalization-
group results in the special case of a self-similar solution,
illustrating the multiple-scale, singular-perturbative na-
ture of the renormalization-group approach. The rela-
tionship between the renormalization group and singular
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perturbation theory has also been explored by Goldenfeld
and co-workers (see, for example, Ref. [14]). The tech-
nique presented here could be used to derive non-self-
similar solutions to statistical problems in other areas of
physics by applying it to the appropriate integral equa-
tions analogous to the DIA equations.

Note added in proof. V. M. Canuto and M. S. Dubovi-
kov, as part of a larger investigation into turbulence mod-
eling, have also presented results for turbulence subjected
to slowly varying, non-self-similar forcing (unpublished).
These authors also find an expression for a k-dependent
eddy viscosity, though it is not equivalent to that found
here due to the essentially different form adopted for the
random-force correlation.
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